Advanced Turtle Graphics

Advanced Turtle Graphics Creating recursive drawings. Implementing L-systems for generating plant-like structures. Using the turtle module for scientific visualizations.

Creating advanced turtle graphics involves a mix of recursive drawing techniques, L-systems for simulating plant growth, and using the turtle module for scientific visualizations. Let's break down each of these concepts with examples.

Recursive Drawings

Recursive drawings are created by defining a function that calls itself to draw complex patterns. Here's an example of a simple recursive tree:

Python Code

import turtle

def draw_tree(branch_length, t):

if branch_length > 5:

t.forward(branch_length)

t.right(20)

draw_tree(branch_length - 15, t)

t.left(40)

draw_tree(branch_length - 15, t)

t.right(20)

t.backward(branch_length)

def main():

screen = turtle.Screen()

screen.bgcolor("white")

t = turtle.Turtle()

t.color("green")

t.speed(0)

t.left(90)

t.up()

t.backward(100)

t.down()

draw_tree(100, t)

screen.mainloop()

if __name__ == "__main__":

main()

Implementing L-systems

L-systems (Lindenmayer systems) are a mathematical formalism to describe the growth of plants. Here's an example of using L-systems to generate a fractal tree:

Python Code

import turtle

def apply_rules(ch):

new_str = ""

if ch == 'F':

new_str = "FF+[+F-F-F]-[-F+F+F]"

else:

new_str = ch

return new_str

def process_string(old_str):

new_str = ""

for ch in old_str:

new_str = new_str + apply_rules(ch)

return new_str

def create_lsystem(num_iters, axiom):

start_string = axiom

end_string = ""

for _ in range(num_iters):

end_string = process_string(start_string)

start_string = end_string

return end_string

def draw_lsystem(t, instructions, angle, distance):

saved_states = []

for cmd in instructions:

if cmd == 'F':

t.forward(distance)

elif cmd == '+':

t.right(angle)

elif cmd == '-':

t.left(angle)

elif cmd == '[':

saved_states.append((t.position(), t.heading()))

elif cmd == ']':

position, heading = saved_states.pop()

t.penup()

t.goto(position)

t.setheading(heading)

t.pendown()

def main():

instructions = create_lsystem(4, "F")

print(instructions)

screen = turtle.Screen()

screen.bgcolor("white")

t = turtle.Turtle()

t.color("green")

t.speed(0)

t.left(90)

t.up()

t.backward(200)

t.down()

draw_lsystem(t, instructions, 25, 5)

screen.mainloop()

if __name__ == "__main__":

main()

Scientific Visualizations

Using the turtle module for scientific visualizations can be fun and educational. For example, we can simulate the trajectory of a projectile:

Python Code

import turtle

import math

def draw_trajectory(v, angle):

g = 9.81 # gravity

angle_rad = math.radians(angle)

t = turtle.Turtle()

t.speed(0)

t.penup()

t.goto(-200, 0)

t.pendown()

for i in range(200):

t_x = i

t_y = t_x * math.tan(angle_rad) - (g * t_x ** 2) / (2 * (v * math.cos(angle_rad)) ** 2)

t.goto(t_x - 200, t_y)

def main():

screen = turtle.Screen()

screen.bgcolor("white")

v = 50 # initial velocity

angle = 45 # launch angle

draw_trajectory(v, angle)

screen.mainloop()

if __name__ == "__main__":

main()

These examples demonstrate how you can use the turtle module to create recursive drawings, implement L-systems for plant-like structures, and generate scientific visualizations. Each example can be expanded and modified for more complex and detailed graphics.

Top of Form

Post a Comment

Previous Post Next Post